Characterization of Membrane Lipidome Changes in Pseudomonas aeruginosa during Biofilm Growth on Glass Wool
نویسندگان
چکیده
Bacteria cells within biofilms are physiologically distinct from their planktonic counterparts. In particular they are more resistant to detrimental environmental conditions. In this study, we monitored the evolution of the phospholipid composition of the inner and outer membranes of P. aeruginosa during the biofilm formation (i.e., from 1-, 2-, to 6-day-old biofilm). Lipidome analyses were performed by electrospray ionization mass spectrometry. In addition to the lipidomic analysis, the fatty acid composition was analysed by gas chromatography/mass spectrometry. We found that the lipidome alterations of the inner and the outer membranes varied with the biofilm age. These alterations in phospholipid compositions reflect a higher diversity in sessile organisms than in planktonic counterparts. The diversity is characterized by the presence of PE 30∶1, PE 31∶0 and PG 31∶0 for the lower masses as well as PE 38∶1, 38∶2, 39∶1, 39∶2 and PG 38∶0, 38∶1, 38∶2, 39∶1, 39∶2 for the higher masses. However, this lipidomic feature tends to disappear with the biofilm age, in particular the high mass phospholipids tend to disappear. The amount of branched chains phospholipids mainly located in the outer membrane decreased with the biofilm age, whereas the proportion of cyclopropylated phospholipids increased in both membranes. In bacteria present in oldest biofilms, i.e., 6-day-old, the phospholipid distribution moved closer to that of planktonic bacteria.
منابع مشابه
The use of glass wool as an attachment surface for studying phenotypic changes in Pseudomonas aeruginosa biofilms by two-dimensional gel electrophoresis.
Two-dimensional polyacrylamide gel electrophoresis was used to demonstrate phenotypic differences between Pseudomonas aeruginosa biofilm cells and the planktonic counterpart cells under defined culture conditions. Glass wool was used as a substratum for cell attachment as it affords a large surface-to-volume ratio (1 g with a mean diameter of 15 microns = 1300 cm2), supports the growth of biofi...
متن کاملEvidence for the involvement of the anthranilate degradation pathway in Pseudomonas aeruginosa biofilm formation
Bacterial biofilms are complex cell communities found attached to surfaces and surrounded by an extracellular matrix composed of exopolysaccharides, DNA, and proteins. We investigated the whole-genome expression profile of Pseudomonas aeruginosa sessile cells (SCs) present in biofilms developed on a glass wool substratum. The transcriptome and proteome of SCs were compared with those of plankto...
متن کاملOne-step purification and characterization of alginate lyase from a clinical Pseudomonas aeruginosa with destructive activity on bacterial biofilm
Objective(s): Pseudomonas aeruginosais a Gram-negative and aerobic rod bacterium that displays mucoid and non-mucoid phenotype. Mucoid strains secrete alginate, which is the main agent of biofilms in chronic P. aeruginosa infections, show high resistance to antibiotics; consequently, the biological disruption of mucoid P. aeruginosa biofilms is an attractive area of study for researchers. Algin...
متن کاملRelationship of cell surface hydrophobicity with biofilm formation and growth rate: A study on Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli
Objective(s): This study was designed to determine the relationship of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli isolates in multispecies biofilms and their individual phenotypic characters in biofilm consortia. Materials and Methods: The subject isolates were recovered from different food samples and identified on the basis of growth on differential and selective med...
متن کاملEvaluation of adhesive and anti-adhesive properties of Pseudomonas aeruginosa biofilms and their inhibition by herbal plants
BACKGROUND AND OBJECTIVES Adhesion and colonization are prerequisites for the establishment of bacterial pathogenesis. The biofilm development of Pseudomonas aeruginosa was assessed on adhesive surfaces like dialysis membrane, stainless steel, glass and polystyrene. MATERIALS AND METHODS Microtiter plate biofilm assay was performed to assess the effect of nutrient medium and growth parameters...
متن کامل